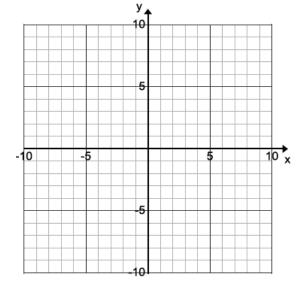
Lesson 3.3.2: Patterns in Absolute Value Graphs

Targets:

1. I understand how to transform absolute value equations.

Warm Up:

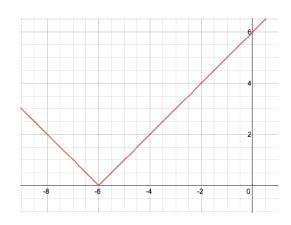

Graph all three functions on the same coordinate plane. Notice you have already graphed these in Lesson 3.3.1.

a.
$$f(x) = |x|$$

b.
$$g(x) = |x - 5|$$

c.
$$h(x) = |x+2|$$

What do you notice about the three graphs? Can you find a pattern that might help you graph similar functions in the future?



Practice 1

- 1.) Your classmate is unsure how to graph this function: g(x) = |x 4|. Write an explanation about how you can transform the function f(x) = |x| to graph g(x).
- 2.) Karla and Isamar are disagreeing over which way the graph of the function g(x)=|x+3| is translated relative to the graph of f(x)=|x|. Karla believes the graph of g is "to the right" of the graph of f; Isamar believes the graph is "to the left." Who is correct? Use the coordinates of the vertex of f and g and to support your explanation.

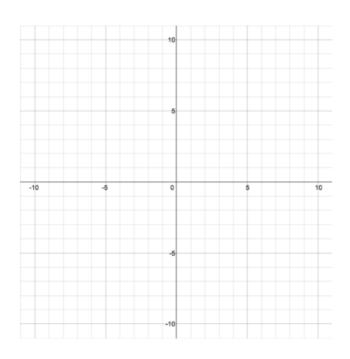
3.) Write the formula for the function depicted by the graph.

y =

Practice 2

Let f(x) = |x|, g(x) = f(x) - 3, h(x) = f(x) + 2 for any real number x.

a. Write an explicit formula for g(x) in terms of |x| (i.e., without using f(x) notation).


b. Write an explicit formula for h(x) in terms of |x| (i.e., without using f(x) notation).

c. Complete the table of values for these functions.

x	f(x) = x	g(x) = f(x) - 3	h(x) = f(x) + 2
-3			
-2			
-1			
0			
1			
2			
3			

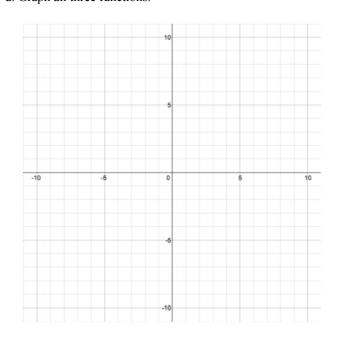
e. What is the relationship between the graph of y = f(x) and the graph of y = f(x) + k?

d. Graph all three functions.

Practice 3

Let f(x) = |x|, g(x) = 2f(x), $h(x) = \frac{1}{2}f(x)$ for any real number

a. Write an explicit formula for g(x) in terms of |x| (i.e., without using f(x) notation).


b. Write an explicit formula for h(x) in terms of |x| (i.e., without using f(x) notation).

c. Complete the table of values for these functions.

x	f(x) = x	g(x)=2f(x)	$h(x) = \frac{1}{2}f(x)$
-3			
-2			
-1			
0			
1			
2			
3			

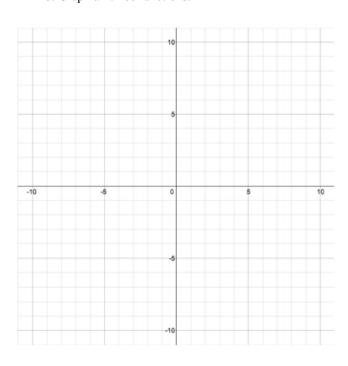
e. What is the relationship between the graph of y = f(x) and the graph of $y = k \cdot f(x)$?

d. Graph all three functions.

Practice 4

Let p(x) = -|x|, q(x) = -2f(x), $r(x) = -\frac{1}{2}f(x)$ for any real number

a. Write an explicit formula for q(x) in terms of |x| (i.e., without using f(x) notation).


b. Write an explicit formula for r(x) in terms of |x| (i.e., without using f(x) notation).

c. Complete the table of values for these functions.

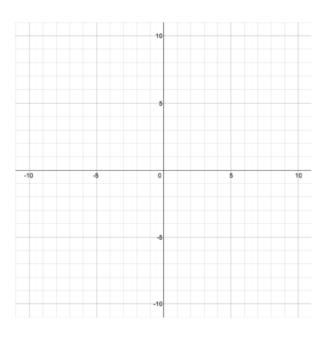
x	p(x) = - x	q(x) = -2f(x)	$r(x) = -\frac{1}{2}f(x)$
-3			
-2			
-1			
0			
1			
2			
3			

e. What is the relationship between the graph of y = f(x) and the graph of $y = -k \cdot f(x)$?

d. Graph all three functions.

Exit Ticket

Graph the following functions by transforming the graph of f(x) = |x|


a.
$$g(x) = |x - 3|$$

b.
$$h(x) = |x| + 3$$

c.
$$j(x) = 3|x|$$

d.
$$k(x) = -3|x|$$

e.
$$m(x) = 2|x+2|+2$$

