Lesson 4.2.5: Applying Quadratics

Targets:

1. I understand how to solve real world problems using quadratics.

Warm Up:

Now that we know how to use the quadratic formula, let's see if we can apply it to real life examples.

A ball is shot into the air from the edge of a building, 50 feet above the ground. Its initial velocity is 20 feet per second.

The equation $h = -16t^2 + 20t + 50$ can be used to model the height of the ball after t seconds. About how long does it take for the ball to hit the ground?

Practice 1

A ball is thrown straight up, from 3 m above the ground, with a velocity of 14 m/s. When does it hit the ground?

Ignoring air resistance, we can work out its height by adding up these three things:

The height starts at 3 m:	3
It travels upwards at 14 meters per second (14 m/s):	14t
Gravity pulls it down, changing its speed by about 5 m/s per second (5 m/s ²):	-5t ²
(Note for the enthusiastic: the -5 t^2 is simplified from -($\frac{1}{2}$)at ² with a=9.81 m/s ²)	

Add them up and the height h at any time t is:

$$h = 3 + 14t - 5t^2$$

Practice 2

The number of mosquitoes in millions, m, in Brooklyn, New York depends on the June rainfall in centimeters, r, and can be modeled by the function m = -r(r-4).

- 1. After how many centimeters of rainfall will there be no mosquitos left?
- 2. What is the maximum possible number of mosquitos?
- 3. After how many centimeters of rainfall will the maximum number of mosquitos occur?

Exit Ticket

You are standing on top of a building that is 15 meters high. You hit a golf ball off the building with an upward velocity of 20 m/s. Fill in the blanks in the given equation and find out when the ball will hit the ground.

$$h = -5t^2 + _{\underline{}}t + _{\underline{}}$$