Lesson 4.1.3: Advanced Factoring

Targets:

1. I understand how to factor a quadratic expression into a binomial.

Warm Up:

In Lesson 4.1.2, we saw that factoring is the reverse process of multiplication. We factor a polynomial by reversing the distribution process.

Consider the following example of multiplication:

Factored Form Expanded Form
$$(x+3)(x+5) \rightarrow x^2 + 5x + 3x + 15 \rightarrow x^2 + 8x + 15$$

When we compare the numbers in the factored form with the numbers in the expanded form, we see that 15 (c) is the product of the two numbers $(3 \cdot 5)$ and 8 (b) is their sum (3 + 5).

• Can you explain why that relationship exists between the numbers in the factors and the numbers in the final expanded form?

Practice 1

Use the distributive property to expand each binomial into a quadratic expression:

1.)
$$(5x+2)(x+3)$$

2.)
$$(3x+6)(x+4)$$

3.)
$$(2x+5)(3x+4)$$

• For each problem in Practice 1, how did you calculate for a, b, and c of the quadratic expression? (Reminder: a quadratic is in the form of $ax^2 + bx + c$)

• How is this different from how you calculated for them in the Warm Up?

• How is this the same as how you calculated for them in the Warm Up?

Practice 2

Use the pattern you discovered in Practice 1 to help you work backwards. Factor this quadratic expressions into binomial expressions:

a.
$$5x^2 + 17x + 14 = (\underline{x} \pm \underline{)}(\underline{x} \pm \underline{)}$$

Step 1: What are your options for factors of $5x^2$?

Step 2: What are you options for factors of 14?

Step 3: What combination of the factors from step 1 and step 2 would give you 17x?

b.
$$3x^2 - x - 4 = (\underline{x} \pm \underline{)}(\underline{x} \pm \underline{)}$$

Step 1: What are your options for factors of $3x^2$?

Step 2: What are you options for factors of -4?

Step 3: What combination of the factors from step 1 and step 2 would give you -x?

Practice 3

Use the same steps used in Practice 2 to help you factor the following quadratic expressions:

1.)
$$3x^2 - 2x - 8$$

2.)
$$3x^2 + 10x - 8$$

3.)
$$2x^2 - 21x - 36$$

Exit Ticket

Factor the following quadratic expressions:

1.)
$$3x^2 - 2x - 5$$

$$2.) -2x^2 + 5x - 2$$

3.)
$$5x^2 + 19x - 4$$

4.)
$$4x^2 - 12x + 9$$