Lesson 4.2.1: Exploring Quadratic Graphs

Targets:

- 1. I understand how to graph quadratic functions.
- 2. I understand how a, b, and c change the graph of the function $f(x) = ax^2 + bx + c$.

Warm Up:

Use this function to complete the warm up:

$$f(x) = x^2 + 2x + 3$$

1. Create a table of values.

2. Graph function <i>f</i>

Vocabulary

Find a definition that you understand for each term, then label your graph using the appropriate terms from below.

Parabola	Vertex of a Quadratic	Axis of Symmetry

Practice 1

Graph each of the following functions on the same coordinate plane.

a.
$$f(x) = x^2$$

b.
$$g(x) = 4x^2$$

c.
$$h(x) = \frac{1}{4}x^2$$

d.
$$j(x) = -x^2$$

e. How does the number in front of the x^2 change the graph? What if it is negative?

Practice 2

Graph each of the following functions on the same coordinate plane.

a.
$$f(x) = x^2$$

b.
$$g(x) = x^2 + 3$$

c.
$$h(x) = x^2 - 3$$

d. How does the number after x^2 change the graph?

Practice 3

Graph each of the following functions on the same coordinate plane.

a.
$$g(x) = x^2 + 3$$

b.
$$h(x) = x^2 + 2x + 3$$

c.
$$j(x) = x^2 - 2x + 3$$

d. How does the number in front of x change the graph?

Exit Ticket

1. If $f(x) = ax^2 + bx + c$, fill in the table below:

How does a change the graph of f ?	How does b change the graph of f ?	How does c change the graph of f ?

2. Given the function $g(x) = -2x^2 + 4x - 5$, describe as many characteristics of the graph as you can without actually looking at the graph.