Lesson 1.3.6: Compound Inequalities

Targets:

1. I can solve and graph compound inequalities.

Warm Up

1. Solve $w^2 = 121$, for w. Graph the solution on a number line.

2. Solve $w^2 < 121$, for w. Graph the solution on a number line and write the solution set as a compound inequality.

3. Solve $w^2 \ge 121$, for w. Graph the solution on a number line and write the solution set as a compound inequality.

Practice 1

Consider the compound inequality: -5 < x < 4

- a. Rewrite the inequality as a compound statement of inequality.
- b. Write a sentence describing the possible values of *x*.
- c. Graph the solution set on the number line:

Practice 2

Consider the compound inequality: -5 < 2x + 1 < 4

- a. Rewrite the inequality as a compound statement of inequality.
- b. Solve each inequality for *x*. Then write the solution to the compound inequality.
- c. Write a sentence describing the possible values of *x*.
- d. Graph the solution set on the number line:

Practice 3

Given x < -3 or x > -1

- a. What must be true in order for the compound inequality to be a true statement?
- b. Write a sentence describing the possible values of *x*.

c. Graph the solution set on the number:

Practice 4

Given x + 4 < 6 or x - 1 > 3

- a. Solve each inequality for *x*. Then write the solution to the compound inequality.
- b. Write a sentence describing the possible values of *x*.

d. Graph the solution set on the number:

Exit Ticket

Solve each compound inequality for *x* and graph the solution on a number line.

a.
$$x+6 < 8$$
 and $x-1 > -1$

b.
$$-1 \le 3 - 2x \le 10$$

c. 5x + 1 < 0 or $8 \le x - 5$

d. 10 > 3x - 2 or x = 4

e. x-2 < 4 or x-2 > 4

f. $x-2 \le 4$ and $x-2 \ge 4$

g. 1+x>-4 or 3x-6<-12